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ABSTRACT 

This study aimed to application of Hidden Markov Models (HMM) and Viterbi 

algorithm to characterize the unemployment in Jordan for the period (2000-2014). To 

achieve the study objectives, the study is mainly based on the secondary data related 

to Unemployment selected from the annual reports of the Jordanian Department of 

Statistics for the period (2000-2014). The study findings a number of results, 

including the following: 

a. The unemployment rate system (Yt) (Observed) is relatively unstable because the 

variance (fluctuations) (2
1 = 0.976) between its observations bigger than the 

variance of the uncertain unemployment system (e
2
) (Hidden) (2

0 = 0.326), 

b. The unemployment rates estimation in Jordan for the period (2000-2014), seems 

decreases in the short term. 

Upon the foregoing results, the study reached to a number of conclusions.  

 

KEYWORDS: Hidden Markov Models, Viterbi Algorithm, Unemployment, Transition 

Probabilities, Maximum Likelihood Estimation. 

 

1. INTRODUCTION 

The Hidden Markov Model (HMM) is a stochastic model which provides a high level 

of flexibility for modeling the structure of an observation sequence. It consists of a 

number of non-observable (Hidden) states and an observable sequence, generated by 

the individual hidden states (Eyad & Hameed, 2012: 144).  Also, the (HMM) is a 

statistical model which establishes a model for every word through the statistical 

analysis of large amounts of data with a nite number of states, each associated with a 

probability distribution. The transitions between states cannot be directly measured 

(hidden), but in a particular state an observation can be generated. It is the 

observations and not the states themselves which are visible to an outside observer 

(Ke & et al., 2008: 305). 

The Hidden Markov Model (HMM) is defined as a variant of a finite state machine 

having a set of hidden states, Q, output observations, O, transition probabilities, A, 

output probabilities, B, and initial state probabilities, Π. The current state is not 

observable. Instead of, each state produces an output with a certain probability (B). 

mailto:dralfaisel@yahoo.com
http://www.nist.gov/dads/HTML/finiteStateMachine.html
http://www.nist.gov/dads/HTML/state.html
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Usually the states, Q, and outputs, O, are understood, so an HMM is said to be a triple 

(A, B, ) (Nikolai, 2010: 1-2).  

The study objectives can be summarized as follows: 

a. To identify the concept of Markov analysis and Transition Probabilities' matrix. 

b. To identify the concept of Hidden Markov Models and viterbi algorithm. 

c. Offer some conclusions for the decision makers. 

To achieve the study objectives, the researcher formulate the following hypothesis 

as null ( H0): 

H0: There is no statistically significant relationship between the unemployment 

rates and the uncertain unemployment at the significance level (α ≤ 0.05).  

 

2. THEORETICAL PART AND LITERATURE REVIEW  

2.1. Markov Analysis and Transition Probabilities' Matrix 

The Markov analysis is a special case of stochastic or random processes, and look 

for these operations as a series of situations experienced by the phenomenon through 

a certain period of time or processes through which a moving object through different 

periods of time series, called the mentioned operations series by (Markov Chain). In 

order to identify the Markov processes must be used mathematical analytical methods 

and conclusions and to clarify the distinctive properties during the development 

process. 

Credited Markov analysis method to the Russian world (A. Markov) (1922- 1952), 

was limited to use this method in the first instance on the physical applications to 

study the movement of gas molecules in a closed vessel in order to predict the 

movement of these molecules in the future. 

Based on the foregoing, the Markov analysis defined as "Mathematical and 

scientific method to analysisof the behavior of different phenomena's during the 

current period in order to predict the behavior of these phenomena's in the future in 

any later periods". 

An analysis of the Markov method is based on the fundamental assumption that: 

(any system is dealt with in the first instance be in its initial state, in preparation for 

the transition to another state), and this assumption based on a certain probability 

laws called the (Transition Probabilities), which are known as a "transition 

probabilities of a particular case to another case during a certain period of time".  

For example, the probability of transition phenomenon of the case (i) in the current 

period (n) to another state (j) in the later period (n+1) writes as follows (Touama, 

2015: 216): 

         {Xn+1 = j  Xn = i} = ij          ,    i , j                                             …(1) 

Whereas: 

Xn: Value of the phenomenon in the current period (n). 

Xn+1: Value of the phenomenon in the subsequent period (n+1). 

ij: Probability of transmission the phenomenon of state (i) to state (j). 

The traditional status of the transition probabilities (ij) values putting in a square 

matrix   =  ij , which takes the following form: 

 

           11  12   13  …1n                                                                                

                    21   22    23 … 2n                                                                                        

         P =         …………………                                                                     …(2)    

                m1  m2  m3 …mn                                                                                                                  
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The above matrix called the (Transition Probabilities' Matrix), or sometimes called 

(Markov Matrix), which represents the matrix of the stochastic or random processes, 

in which the sum of the probabilities of any row ranks equal to the one, that is:   

           n 

          ∑ ij  = 1       , i = 1,2,…,m                                                                …(3)   

        j =1 

The elements (Pij) of transition probabilities' matrix representing the transition 

probability from the state (i) to the state (j) by one-step or one time period, if we want 

to find the probability value of the movement of phenomenon from the state (i) to the 

state (j) with a limited number of steps or time periods of (m), so the element Pij
m

 can 

be written as follows: 

    Pij
m

 = { Xn+m = j  Xn = i}     ,  i , j  &  (n, m Є N)                            …(4) 

2.2. Hidden Markov Models 
The Hidden Markov models are a statistical tool used for modeling generative 

sequences characterized by a set of observable sequences. The HMM are widely used 

in science, engineering and many other areas (speech recognition, optical character 

recognition, machine translation, bioinformatics, computer vision, finance and 

economics, and in social science, forecast the weather state, determining the cognitive 

aspect of the educational process). The HMM framework can be used to model 

stochastic processes where (Nikolai, 2010: 1-2): 

a. The non-observable state of the system is governed by a Markov process. 

b. The observable sequences of system have an underlying probabilistic dependence. 

The Hidden Markov Model (HMM) is a variant of a finite state machine having a 

set of hidden states, Q, an output alphabet (observations), O, transition probabilities, 

A, output (emission) probabilities, B, and initial state probabilities, . The current 

state is not observable. Instead, each state produces an output with a certain 

probability (B). Usually the states, Q, and outputs, O, are understood, so an HMM is 

said to be a triple, (A, B, ).  

The parameters set of Hidden Markov Model (HMM) is represented by Λ = (A, B, 

)  (Nemeth, 2011: 3): 

Whereas: 

1.The matrix A represent the transition matrix which explain the movement between 

states, and could be clarified by the following formula: 

A = aij} , Where   aij = P qt+1= Sj  qt = Si   ,  1  i, j  N  and   aij = 1    …(5) 

Where: 

S: Individual states and are denoted as, S = S1, S2, … , SN}. 

N: Number of the model states. 

2. B: represent the observation probability matrix, and could be clarified by the 

following formula: 

B = bj(k)}  , Where  bj(k) =  P Ot = Vk  qt = Sj   ,  1  k  M  , 1  j  N      …(6) 

Where: 

Ot : Observation symbol at time t. 

M: Number of distinct observation symbols per state. 

V:  Observation symbols and are denoted as V = V1, V2, … , VM}. 

3. : represent the initial state probabilities, and could be clarified by the following 

formula: 

            = i} ,  Where    i = P q1 = Si      ,    1  i  N                            …(7) 

Where:                          

http://www.nist.gov/dads/HTML/finiteStateMachine.html
http://www.nist.gov/dads/HTML/state.html
http://www.nist.gov/dads/HTML/alphabet.html
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            i   0      and     i = 1                                                                     …(8) 

 

Source: Nemeth, Christopher (2011: 2). 

Figure 1. Hidden Markov Model with observations Yt and hidden states qt 

 

2.3. The Viterbi Algorithm and its assumptions 
The Viterbi algorithm chooses the best state sequence that maximizes the likelihood 

of the state sequence for the given observation sequence. Let Фt(i) be the maximal 

probability of state sequences of the length t that end in state i and produce the t first 

observations for the given model (Nikolai, 2010: 4-5):  

Ф t(i) = max{P(q(1), q(2), ..., q(t-1) ; O(1), O(2), ... , O(t) | q(t) = qi )}       …(9) 

As with Viterbi algorithm, we can perform these calculations in the log domain, 

resulting in the following equation (Eyad & Refeis, 2013: 2519) & (Nikolai, 2010: 5-

7): 

Ln N(Ot ; μ j ,  σj)}= - (L / 2) Ln (2) - 
L

 j=0 Ln (σ j) -
 L

 j=0 (Ot – μ t)
 2
.1 / 2 σ

2
 j 

 

And;                                                                                 j = 0,1                  …(10) 

The Viterbi Algorithm is defined as a dynamic programming algorithm for finding the 

most likely sequence of hidden states–called a Veterbi Path – that results in a 

sequence of observed symbols. 

In light of the above, we can explain the assumptions of Viterbi Algorithm, and 

these assumptions are all satisfied in a first-order hidden Markov model, as follows: 

a. Both of the observed symbols and hidden states must be in a sequence.  

b. The two sequences need to be aligned, and an observed symbol needs to 

correspond to exactly one hidden state 

c. Computing the most likely sequence of hidden states (path) up to a certain point t 

must depend only on the observed symbol at point t, and the most likely sequence of 

hidden states (path) up to point (t −1).  

To solve the Viterbi algorithm we can use the (Markov's Switching algorithm) for 

the means and variances for two states (system), as follows (Yousif & Mardan, 2013: 

338 -342): 

y t = [µ0 1-q t + µ1 q t] + [
2
0 1-q t + 

2
1 q t]  t                                                             …(11) 

Where: 
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        t  N (0,1)  ,    q t  take  (0 or 1),    and  y t represent Unemployment in Jordan. 

And the observation (yt) of the first and second systems in time t, are given through 

the following formulas: 

y t = q t = 0} =  µ0 + 
2
0 t                                                                                                       …(12) 

y t = q t = 1} =  µ1 + 
2
1 t                                                                                                        …(13) 

Such that; 

Eq.(12): means that the observation y t according to the first system in time t. 

Eq.(13): means that the observation y t according to the second system in time t.                     

µ0, µ1: Represent the arithmetic means for the first & second systems respectively.    


2

0, 
2
1: Represent the variances for the first & second systems respectively.    

And for Markov Switching Model of the first order, and for two hidden states there 

for the transition probability matrix are given as follows: 

             P00  P01 

P =                                                                                                               …(14) 

                                                                                                                 P10  P11 

Where: 

Pij = Pr qt = j  qt -1 = i]     ,     
L

j=0  =  ij = 1  ,  i                                …(15) 

qt = 0   q t-1 = 0) = 00                    ,  01  = 1- 00                                  …(16)     )  P      

    qt = 1   q t-1  =1) = 11                    ,  10  = 1- 11                                   …(17)   )  P 

In light of the above we can get on the solution of the parameters (μ j , σj) and (00, 

11) as follows: 

j
(k)

 = 
T

t=1 yt. p(q t=j  yT; 
k-1

) / 
T

t=1 p(q t=j  yT; 
k-1

)                             …(18) 


2

j
(k)

 =
T

t=1( yt -  j
(k)

)( ( yt -  j
(k)

).p (q t= j  yT; 
k-1

) / 
T

t=1 p (q t= j  yT; 
k-1

)  
                                                                                                                         …(19)                 


T

t=2 p(q t=0, q t-1=0  yT; 
k-1

) / 
T

t=2 p(q t=0, q t-1=0  yT; 
k-1

)                         …(20) 

P11
(k)

 = 
T

t=2 p(q t=1, q t-1=1  yT; 
k-1

) / 
T

t=2 p(q t=1, q t-1=1  yT; 
k-1

)             …(21)  

2.4. Literature Review 

After taking a look at some studies related to Hidden Markov Models, a group of 

studies relevant to the study theme had been chosen. Atlas & et al., (2000), explained 

the use of Hidden Markov Models for monitoring machining tool- wear. Boys & et 

al., (2000), refer to the way of detecting homogeneous segments in DNA sequences 

by using Hidden Markov Models. Petrushin (2000), discuss the Hidden Markov 

Models, fundamentals and applications part 2: discrete and continuous Hidden 

Markov Models. Scott C.S., (2001),  explained the importance of the bioinformatics 

as introduction to Hidden Markov Models, SNUCSE artificial intelligence lab 

(SCAI). Boys and Henderson (2001), discuss the comparison of reversible jump 

MCMC algorithms for DNA sequence segmentation by using hidden Markov models. 

Also, Ramanathan (2006),  discuss the applications of Hidden Markov Models. 

Ramage (2007), explained the Hidden Markov Models fundamentals, CS229 section 

notes. Yin (2007), indicates to the volatility estimated and  price prediction using a 

Hidden Markov Model with empirical study. Ke & et al., (2008), refers to the HMM 

speech recognition system based on FPGA. Ropert & et al., (2008), explained the 

Hidden Markov Models estimation and control. Al-Tuorik, L.S., (2010), evolving the 

structure of Hidden Markov Model for detection the Micro Aneurysm. Ibrahim, R.M. 

& et al., (2011), explained the use of Hidden Markov Models in the training and 

testing of the system by the vocal samples, and the system has been described by  

blueprints of the standard UML. Nemeth (2011) discuses the outline of the theory 

behind HMMs, covering areas such as parameter estimation, identification of hidden 

http://www.accenture.com/NR/rdonlyres/6EA0F25D-7FA7-4B43-AFDB-CBA983F1347F/0/HMMTutorialPart2.pdf
http://www.accenture.com/NR/rdonlyres/6EA0F25D-7FA7-4B43-AFDB-CBA983F1347F/0/HMMTutorialPart2.pdf
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states and determining the sequence of hidden states . Eyad & Hameed (2012), an 

efficient face recognition system based on Hidden Markov Model (HMM) and the 

simplest type “haar” of the discrete wavelet transform (DWT). Abbas, and Farhan 

(2012) presents an efficient face recognition system based on Hidden Markov Model 

(HMM) and the simplest type “Haar” of the Discrete Wavelet Transform (DWT).  

Also, Eyad & Refeis (2013), provides the entrance to study the Influence of different 

levels of noisy environment on discrimination rate for the speech recognition systems 

that do not use any type of filters to deal with this problem. Hajo & Florian (2015), 

explained the Hidden Markov Models with state-dependent mixtures: minimal 

representation, model testing and applications to clustering. 

Some authors as (Zeifman, M.I., and Ingman D., (2003), Sirl D., (2005), Kadim 

S.K., (2010), Touama H.Y., (2015) indicated to the importance of using Markov 

analysis, Hidden Markov Models and their applications. 

3. THE APPLIED PART  

3.1. Collection Data 

The study is mainly depend on the secondary data related to Unemployment in 

Jordan, selected from the annual reports of the Jordanian Department of Statistics. 

The researcher select the period (2000-2014) in order to achieve the study objectives. 

As shown in the following  Table No. 1: 

 Table 1.  The Unemployment Rates in Jordan for the period (2000-2014) 

Years (1) 

Unemployment 

Rates (Yt) 

(2) 

Estimation 

Unemployment (Ŷt) 

(3) 

Uncertain 

Unemployment (e
2
) * 

2000 13.70 14.50 0.6400 

2001 14.70 14.35 0.1225 

2002 15.30 14.20 1.2100 

2003 14.50 14.05 0.2025 

2004 12.50 13.90 1.9600 

2005 14.80 13.75 1.1025 

2006 14.00 13.60 0.1600 

2007 13.10 13.45 0.1225 

2008 12.70 13.30 0.3600 

2009 12.90 13.16 0.0676 

2010 12.50 13.00 0.2500 

2011 12.90 12.86 0.0016 

2012 12.20 12.71 0.2601 

2013 12.60 12.56 0.0016 

2014 13.40 12.41 0.9801 

(1) Actual values of Unemployment Rates (Yt) / Jordanian Department of Statistics. 

(2) Estimation Unemployment (Ŷt), obtained through applying the estimating 

equation of Trend line (Ŷt = 13.453 – 0.149 Ti).  

(3) Uncertain Unemployment, obtained through of the square of errors, where           

(e = y t – Ŷ t), and calculated by (SPSS) program. 

 

3.2. RESULTS AND DISCUSSION   

3.2.1. Estimation the Unemployment Rates and Uncertain Unemployment 

Depending on the relations (18, 19, 20, and 23) we got the Maximum Likelihood 

Estimates of the Viterbi algorithm by using (MSM) for the Unemployment rates (Yt) 
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and the uncertain Unemployment (e
2
) by using MATLAB program. As shown in the 

following Table No. 2:  

Table 2. Maximum Likelihood Estimates of the Viterbi algorithm by (MSM*) 

Unemployment Rates 

 (Observed)  (Yt) 

Uncertain Unemployment (Hidden) (e
2
) 

µ1 13.453 µ0 0.496 


2
1 0.976  

2
0 0.326. 

11 0.618 00 0.615 

(*) MSM :  means Markov Switching Model. 

The results listed in table (2) above, can be adopted to distinguish between the 

unemployment rate (Yt) and the uncertain unemployment (e
2
) according to the values 

of means and variances, where the results refers to:  

a. The unemployment rate system (Observed) (Yt)  is relatively unstable because 

the variance (fluctuations) (
2

1= 0.976) between its observations bigger than the 

variance of the uncertain unemployment system (e
2
) (Hidden) (

2
0 = 0.326), and can 

be considered the uncertain unemployment system is relatively stable system, because 

the mean of this system which equal to (µ0 = 0.496) is less than the mean of the 

unemployment rate  (μ1 = 13.453), and the variance (fluctuation) of the uncertain 

unemployment less than the variance (fluctuations) for the unemployment rate. 

b. The estimates of the transition probabilities (0.618) and (0.615), indicates to 

fixed of continuity for the two systems and its rapprochement with a very slight 

differences between them. 

 

3.2.2. Test the Study Hypothesis  

H0: There is no statistically significant relationship between the unemployment 

rates and the uncertain unemployment at the significance level (α ≤ 0.05). 
To test the previous hypothesis, was used the correlation coefficient (Pearson), as 

shown in the following Table No. 3: 

Table 3. The Correlation coefficients (Pearson) between the unemployment rates and 

the uncertain unemployment 

1.000 .189

. .500

15 15

.189 1.000

.500 .

15 15

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Unemployment Rates (Yt)

Uncertain Unemployment

(e2)

Unemployment

Rates (Yt)

Uncertain

Unemployment (e2)

 
The results in Table (3), explained that there is no statistically significant 

relationship between the unemployment rates and the uncertain unemployment at the 

significance level (α = 0.05). Which is supported by the statistical significant (p-

value) for the correlation coefficient, and this value is greater than the significance 

level (α = 0.05). This means that is not reject the null hypothesis (H0). 

In light of the previous results concluded the irrelevance and significance of a 

causal relationship bidirectional between the unemployment rates and the uncertain 

unemployment. 
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4. CONCLUSIONS  

This part includes the most important conclusions in light of  the results, as follows: 

a. The unemployment rate (Observed) (Yt) is relatively unstable because the 

variance (fluctuations) (
2

1 = 0.976) between its observations bigger than the variance 

of the uncertain unemployment (e
2
) (Hidden) (

2
0 = 0.326), 

b. There is no statistically significant relationship between the unemployment rates 

and the uncertain unemployment at the significance level (α = 0.05). 

c. The results of the unemployment rates estimation in Jordan for the period (2000-

2014) according to the estimation model of the general Trend (Ŷt =13.453 – 0.149 Ti), 

that the estimates seems decreases in the short term. 
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